89 research outputs found

    Multi-Sensor Integration of Vegetation Index Products for Long-Term Monitoring of Vegetation Dynamics: A Case Study from MODIS to VIIRS

    Get PDF
    Spectral vegetation index (VI) time series data from moderate resolution sensors, such as Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), have widely been used to identify "hot spot" areas of vegetation changes and to characterize long-term trends of vegetation changes. The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor series of the Joint Polar Satellite System (JPSS) program is slated to continue the highly calibrated data stream initiated with MODIS. The first VIIRS sensor has operationally been acquiring Earth-reflected radiation since March 2012. The second VIIRS sensor (NOAA-20) was launched in November 2017, which is to continue the measurements made by the first VIIRS sensor. In this study, we examined an integrated use of MODIS and VIIRS VI time series data on capturing vegetation dynamics in the Asia-Pacific region using their overlapped period of observations (2013-2017). Three VIs, the "top-of-canopy (TOC)" normalized difference vegetation index (NDVI), TOC enhanced vegetation index (EVI), and TOC two-band enhanced vegetation index (EVI2), were investigated. For all the three VIs, VIIRS VIs were systematically higher than the MODIS counterparts due mainly to their spectral bandpass differences. However, both VIIRS and MODIS VIs showed the comparable spatial patterns in their temporal variations. Empirical spectral corrections allowed to merge the two data streams, which slightly improved the temporal resolution of the VI temporal profiles. These results suggest the suitability of VIIRS data to extend and merge into the MODIS VI record for long-term vegetation dynamics studies

    A Theoretical Analysis of Deep Neural Networks for Texture Classification

    Full text link
    We investigate the use of Deep Neural Networks for the classification of image datasets where texture features are important for generating class-conditional discriminative representations. To this end, we first derive the size of the feature space for some standard textural features extracted from the input dataset and then use the theory of Vapnik-Chervonenkis dimension to show that hand-crafted feature extraction creates low-dimensional representations which help in reducing the overall excess error rate. As a corollary to this analysis, we derive for the first time upper bounds on the VC dimension of Convolutional Neural Network as well as Dropout and Dropconnect networks and the relation between excess error rate of Dropout and Dropconnect networks. The concept of intrinsic dimension is used to validate the intuition that texture-based datasets are inherently higher dimensional as compared to handwritten digits or other object recognition datasets and hence more difficult to be shattered by neural networks. We then derive the mean distance from the centroid to the nearest and farthest sampling points in an n-dimensional manifold and show that the Relative Contrast of the sample data vanishes as dimensionality of the underlying vector space tends to infinity.Comment: Accepted in International Joint Conference on Neural Networks, IJCNN 201

    H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Get PDF
    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions

    Understanding Climate-Vegetation Interactions in Global Rainforests Through a GP-Tree Analysis

    Get PDF
    The tropical rainforests are the largest reserves of terrestrial carbon and, therefore, the future of these rainforests is a question that is of immense importance in the geoscience research community. With the recent severe Amazonian droughts in 2005 and 2010 and on-going drought in the Congo region for more than two decades, there is growing concern that these forests could succumb to precipitation reduction, causing extensive carbon release and feedback to the carbon cycle. However, there is no single ecosystem model that quantifies the relationship between vegetation health in these rainforests and climatic factors. Small scale studies have used statistical correlation measure and simple linear regression to model climate-vegetation interactions, but suffer from the lack of comprehensive data representation as well as simplistic assumptions about dependency of the target on the covariates. In this paper we use genetic programming (GP) based symbolic regression for discovering equations that govern the vegetation climate dynamics in the rainforests. Expecting micro-regions within the rainforests to have unique characteristics compared to the overall general characteristics, we use a modified regression-tree based hierarchical partitioning of the space to build individual models for each partition. The discovery of these equations reveal very interesting characteristics about the Amazon and the Congo rainforests. Our method GP-tree shows that the rainforests exhibit tremendous resiliency in the face of extreme climatic events by adapting to changing conditions

    Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    Get PDF
    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of variance suggesting that the algorithm is reliable and robust, except in the tropics where some systematic differences are observed. Finally, comparisons with ground data suggest that the algorithm is performing well, but that end of season metrics associated with vegetation senescence and dormancy have higher uncertainties than start of season metrics

    Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    Get PDF
    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000–2002 combined summer drought–dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000–2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000–2001, 2005 and 2009) were characterized by negative anomalies with peak values between �1.5 and �0.5 and were statistically different (P \u3c 0:001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p \u3c 0:001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI \u3c �1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 D 65 and 60, p \u3c 0:05) than for the IM grassland biome (R2 D 53, p \u3c 0:05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the desert and grassland biomes on the Plateau

    Deploying a Quantum Annealing Processor to Detect Tree Cover in Aerial Imagery of California

    Get PDF
    Quantum annealing is an experimental and potentially breakthrough computational technology for handling hard optimization problems, including problems of computer vision. We present a case study in training a production-scale classifier of tree cover in remote sensing imagery, using early-generation quantum annealing hardware built by D-wave Systems, Inc. Beginning within a known boosting framework, we train decision stumps on texture features and vegetation indices extracted from four-band, one-meter-resolution aerial imagery from the state of California. We then impose a regulated quadratic training objective to select an optimal voting subset from among these stumps. The votes of the subset define the classifier. For optimization, the logical variables in the objective function map to quantum bits in the hardware device, while quadratic couplings encode as the strength of physical interactions between the quantum bits. Hardware design limits the number of couplings between these basic physical entities to five or six. To account for this limitation in mapping large problems to the hardware architecture, we propose a truncation and rescaling of the training objective through a trainable metaparameter. The boosting process on our basic 108- and 508-variable problems, thus constituted, returns classifiers that incorporate a diverse range of color- and texture-based metrics and discriminate tree cover with accuracies as high as 92% in validation and 90% on a test scene encompassing the open space preserves and dense suburban build of Mill Valley, CA
    • …
    corecore